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Absorbing state transition in a one-dimensional contact replication process
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In this work, the contact proces$€P) is modified in order to model a contact replication proa&RP) for
monoclonal reproduction. The occupation rates of an empty site depend on the nearest-neighbor and next-
nearest-neighbor sites. The CRP exhibits an absorbing state transition studied through cluster approximations
and Monte Carlo simulations. The critical rate obtained from simulatings2.02634), is smaller than that
for CP. However, the CRP critical exponents are in agreement with those for CP and, consequently, the model
belongs to the directed percolation universality class.
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[. INTRODUCTION least one empty neighbor. The WB model does not belong to
) o ) the DP universality class. In the present work, we consider a
The _S|mplest examp_lg of a nonequilibrium model with anyna_dimensional contact replication procéS&P), a mix of
absorbing state transition is the contact procgS®), a  he WB model and the contact process, in which only cells
model initially proposed as an idealized epideffdif In this  \yith at least one empty neighbor replicate at ratbut any
model, individuals lying on a lattice can die at rate 1 whereag)ne cel| dies at rate 1. As discussed in the next section, this
empty sites are occupied at rdte/q. Here,k is its number  crp introduces a next-nearest-neightdNN) dependence
of occupied nearest-neighb@xN) sites and is the coordi- ¢4 the occupation rate of an empty site.
nation number of the lattice. As the ratio of infection and  Tpig paper is organized as follows. In Sec. Il the details of
death increases, the system exhibits a critical phase transitiQRe cRP model are presented. In Sec. Il we discuss a mean
from an empty to an active state. It is a well-known fact thatfie|q analysis of CRP through cluster approximations. In Sec.

the CP belongs to the directed percolati@®p) universality | Monte Carlo simulations are considered. Finally, some
class[2,3]. For a review about contact process and DP unignclusions are drawn in Sec. V.

versality class see Refg1—6].
Due to its importance as a fundamental model, several CP Il. MODEL
generalizations were propos¢d,8,10-14. One of them is
the one-dimensional-contact procesfr], in which the rate
for filling an empty site with two occupied NN sites &\
while the occupation rate of an empty site with one occupie
NN site is\/2 (CP is the particular casé=1). Other ex-
amples are the diffusive CR8], in which particles execute
NN hoppings at a rat®, the conservative CP, in which the
number of particles does not vaf9], and processes with
multiparticle creation[10] and annihilation[11]. All these
models preserve the DP universality class. Another grou
whose static behavior falls in the DP class includes model

with an infinity number of absorbing configuratiofi2-14.  ,her. In contrast, in the CRP the occupation rates depend
But for these models the time-dependent behavior, associate( the number of empty NN sites. For example, the transi-

with the spread of activity from a localized seed, varies CONion 000 — @@® has rater/2 in CP and rate\ in CRP.

tinl;IA\OUS|y With ';he initiafl par;clicle de_nsit[(/jl3,15d1|@. is that th All possible transitions and the respective rates for one-
common feature for all mentioned models Is that the yimengional CRP are shown in Table I. A central feature of
flow of the infection is equally divided among all the neigh- the CRP is the NNN dependence for the occupation rate of
bors of the contaminated individuals. This is a reasonabl%ln empty site, also present in the pair contact proce€®)
hypothesis for a model of'epi'demics, but 'not adequate for ?12,14]_ Howe,ver, differently from PCP, CRP has a unique
moldel of hmclnnocAIonaI”repHCﬁtlon such as in tumor olr_ bacte;psorhing state. As expected for models with absorbing con-
rial growth[ ﬂ7]' Ct]tjahy' In these lfascfs.g 'Z more realistic tr? figurations, if the reproduction rate is not sufficiently larger
Suppose ahbow of t eh new C? S IVIdeI fJUSt am0||"|g tI &han the death rate, the absorbing state always is reached and
empty neig| ors{18].. .T e simplest model for monoclonal ¢ population vanishes. For the WB model, the critical rate
replication is the Williams and Bjerkng&VB) model [19] is \WB=1 and a value\P=3.297 85 was found for CP

. ; . e , c . :
that considers death and reproduction only for cells with atl’hus, a critical ratQ\‘CNB<)\C<)\§P defining the absorbing

frontier is expected for the present CRP.
The discrete-time formulation of the CRP used in the
*Electronic address: silviojr@ufv.br simulations is the following. At each time step, one occupied

As in the original CP, the cells lie on a lattice with peri-

odic boundaries, in whickr;=@® represents an occupied and

=0 an empty site. The dynamics of the CRP includes two
Cgrocesses, namely, cell death and reproduction. A cell dies at
constant rate {the time is conveniently rescaledn turn, if
a cell has at least one empty NN site, it replicates at xate
and its daughter cell occupies one of its empty NN sites with
equal probabilities. Thus, only cells in “contact” with empty
sites can replicate. Notice the subtle but essential difference
Between CRP and CP. In CP, an occupied site infects each
dne of its empty NN sites at rate/q independently of their
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TABLE |I. Transitions that contribute todp(®)/dt or A. One-site approximation

dp(@®)/dt. The probability rate for an occupied site is given by

T iti A AN AN N d - ~ AN o~ A A ~
i © T B Jp(@)=-p(@)+pO80)+ JpOed) +rpOee)
00 . 0OC 1 -1 0 ~
090000 +\p(@00), (3)
000000 1 -1 -1 2 _ _ .
~ - _ _ where symbols with the hat designate the site, and symbols
ee0 000 1 1 2

without the hat represent its neighborhood. In E2), the

first term represents the particles sinking at rate 1, the second
0000 -0000 N2 +1 +1 2 and the third terms represent the occupation rates from the
neighbors with an empty neighborhood, and the fourth and

0000—~0000 > +1 +1 2 fifth terms the occupation from the neighbors with one occu-
R ) pied NN site. By symmetry, p(@.O)zp(OQO) and
O.?.O_)O.?.O A 1 2 ! p(O0®)=p(@e®0). Thus, Eq.(3) becomes
0000000000  3\/2 +1 +2 2
ee000 00000 2\ +1 +2 1 d%p(‘) =-p(@®) +\p(OGO) + 2Ap(OO®). (4

] ] ) _ Here, the hats were omitted for the sake of simplicity.
site (a cell is chosen at random. The chosen cell dies with | the one-site approximation, the probability of a micro-
probability p=1/(1+\). In turn, the cell replicates with gcopic configuration is factorized ag(0y,07,0y,01, ...)
probability 1-p if at least one of their NN sites is empty. If — p(a)p(a)p(o)p(a)), ..., i.e., a simple mean field approxi-
all the NN sites are occupied, the cell does not replicate. Butyation. Usingp(®)=p [p(O)=1-p], wherep is the mean

if the replication occurs, one of their empty NN sites is 0C-yengity of particles, and the one-site approximation in Eq.
cupied with equal probability. After each step, the time |s(4) one finds

incremented byAt=1/n, wheren is the number of cells just
prior to the event. It is expected that discrete and continuous dp _ X = 1o - Ao? 5
dynamics differ somewhat at short times, but that both for- dt = )p=Ap”. (5)

mulations exhibit the same long-time dynamjds. . )
The last equation has a non-null stationary solutidp/dt

=0 ,
lll. CLUSTER APPROXIMATIONS )

In this section we develop a mean field theory for the ps= )‘—_1_ (6)
CRP using cluster approximations introduced by ben- A

Avraham and K6hlef20]. These approximations reproduce Therefore, as in the original CR], the critical rate in this
qualitatively well the phase diagrams, but the critical eXPO-gpproximation is\,=1. In turn, the particle density near the
nents for low-dimensional systenid< 3) are incorrect4]. transition scales as~|A[#=|\ -\, with 8=1/2, avalue
However, the critical rate for the absorbing state transitioryjtferent from that obtained for the original CP modgd
approaches the correct value as higher order approximation_sl) in the one-site approximation.

are considered. The cluster approximation consists of a set of Concerning the dynamics of the CRP, the solution of Eq.
coupled differential equations for the probabilitiggo) of a (5) with the initial conditionp(0)=1 is ,

clustero with n sites. In general, the transitions of a cluster
with n sites depend on the sites outside the cluster. Conse- A1
quently, then-site probabilities are coupled with those for p(0) = \/)\ - exf- 20\ - Dt]
site, wherem>n, generating an infinity hierarchijl4]. The

n-site approximation truncates this hierarchy by approximator

ing m-site probabilities byn-site conditional probabilities. 1
For example, the four-site probability is approximated by p(t) = 3 /n (N=NY). (8)
+

P(01.0},0% 01) = Plailo))ploj, 0, 1) Expanding Eq. (7) for long times, we havep-p;
= p(ai|oj)p(ajloploy, o) (1)  ~ exp(—2p%) for >\, leading to a relaxation time

(N # Ao ()

in the two-site approximation, and r= 1 __ A (9)
202 2\-1)°

p(ai,07,0401) = p(ai|oj, o) p(aj, 0%, 1), 2
P loy.epley oo Thus, 7~ |A[™, wherey =1, the same value of the original

in the three-site approximation with the conditional prob-CP. At the critical point, the particle density decays asymp-
abilities determined by thBayes’ rule[21]. totically as p~1/\t. Therefore, remembering that(A
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=0,t)~t79, the critical exponens=1/2 is obtained. Notice
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C. Three-site approximation

that the critical exponents in the one-site approximation obey The three-site probabilities are defined p®®®)=a

the scaling relatior5= 3/ y,.

B. Two-site approximation

pPCO®)=p(@OO)=b, p(@O®)=Cc, pP(OO®O)=d,
p(@OO)=p(OO®)=¢, andp(OOO)=f. Now, we have 10
unknown variablegincluding p, u, o, and ¢), but the num-

In the two-site approximation the probability of a micro- ber of independent variables is reduced to four through the

scopic configuration is factorized as

p(ai, ay)p(aj, o) ploy, ai)- -
p(ayp(oy)--- '

p(O’i,O'j,O'k,0'|, ) =

(10

following relations:

p=¢d+pu, ¢+2u+tw=1, a+tb=4¢, (16)

b+d=u, cte=pu, e+f=zow.

Using Egs(4) and(12) with the correspondent equations for

The following pair probabilities¢=p(®®) (both sites are gp(@@®)/dt anddp(OOO)/dt, the stationary density can

occupied, w=p(O0O) (both sites are empty u=p(O®)
=p(@O) (one site is occupied and the other empiye de-
fined. Moreover, the normalization conditioh+w+2u=1

and the relatiorp=¢+ u reduce the number of independent

variables to 2.
Table | contains all processes for whighor ¢ change,

the correspondent rat€d), the variations in the number of
particles(ANg) and pairs(ANge), and the number of states

with the same probabilityN,).

Each transition o—o’' in Table |
dp(@®)/dt with p(c)AN,ANge. Using the relation
) (11

p(0i, 0,0y, ...) + p(o, 0,0y, ...) =p(gj, 0, ..

and the symmetry conditions, the following exact equation is

obtained:

%p(..) =-2p(@®) +\[p(@O) + p(@C®) + p(@®O)

+p(000e)]. (12

An analogous procedure faip(®)/dt leads to Eq(4).
Using Eq.(10) in Egs.(4) and(12), we obtain

dp p°= ¢
—=-p+\ 13
qi P , (13
and
d¢ (p* = ¢?)(1-¢)
— ==2p+t N . (14
at~ 2PN o)
The stationary solutions of Eq€L3) and(14) are
A A-1
Ps=2-\ 171 and ¢ = N P (15

respectively. Takingps=0 in Eq. (15), the critical ratex,

=4/3 isfound. Expanding Eq.15) around\, one finds that
ps~ (A=A, and, consequently3=1, which differs from the
value found in the one-site approximation. A numerical inte-

gration of Eqs.(13) and (14) gives p(A=0,t)~t™* and 7
~|AI™ in the asymptotic limit(t—c). Thus, =1 and y,
=1 in agreement with the scaling relatiai* 3/ v,. Notice

contributes to

be evaluated. Thus, from the tables containing all transitions
that contribute tala/dt or df/dt the following equations are
obtained:

dp(00e®
% =-3)(008)+2\p(08e) + Ap(©0ee)
+Ap(C@0@0) 17
and
dp(OOO
% = p(O®0) + 2p(®@00) - \[p(@000)
+p(@@O00)]. (18)
Substituting the three-site approximation,
p(o-ivo-jao-kva-ho-m' . )
p(ai, 7y, 09 P07, 04, 1) P01, 01, T)*
= , (19
p(aj, o)plo, o) -
in Egs.(4), (12), (17), and(18) we find
d
—p=—p+Ad+2\b, (20)
dt
d b
=20+ N(urbH0) A (21)
dt o
da bc _cd?
—=-3a+2\b+a—+rN"5, (22
dt [T’
and
df f _bef
Sogr2enZ 22 (23)
dt ®©  p

The coupled equations were numerically solved providing
the critical ratex.=1.5550 and the usual mean field expo-
nents for the CRB=6=y,=1.

The stationary densitigs; determined through cluster ap-
proximations and Monte Carlo simulations are compared in
Fig. 1. The critical rate obtained from Monte Carlo simula-
tions was\.~2.026, as described in the next section. So, the

that the usual mean field exponents for the CP were obtainetfitical rate in then-site approximation approaches the simu-

(4.

lated value as larger clusters are considered.

036119-3



S. C. FERREIRA, JR. PHYSICAL REVIEW EO, 036119(2004)

10 T T T T T T T T 08 T | T | T T T T T
_ | —— 1=20 i
——
0.8— ——
0.6— —=—
_ -
_ >
0.6 —X=
’f — — one-site ¢
& 4 [ 'le i o? 0.4
. - - - two-site
0.4 — il ; —
: ] —— three-site —
_ 1| e ° Monte Carlo -
[ 0.2
I
0.2 — | ]
| |
_ | I‘ ]
)
0 0 T I L T | T | T | T | T | T | T 00_
0 1 3 4 5 7 8 1.2 1.4 16 1.8 20 2.2 2.4 26

FIG. 2. CRP quasistationary densities versus the replication rate

FIG. 1. Stationary densities for cluster approximations and)\. Systems with sizek=20—2000 are shown.

Monte Carlo simulations.

d&zl. The parametek plays a role similar to that of the
diffusion rateD in the pair contact process with diffusion
(PCPD [22]. Indeed, PCPD seems to exhibit two distinct

All results for the cluster approximations are summarize
in Table Il and compared with MC simulations discussed in
the next section. : ; . . ;

In general, the critical exponents obtained for any mearynlvers.allty. classes depending on Mevalue in the two-site
field approximation have the same values. However, the dis@pproxmaﬂon.
tinct B8 and é values found for the one-site approximation are
a peculiarity of the present model. In order to confirm this IV. MONTE CARLO SIMULATIONS

hypothesis, we generalized the model using a katéor the The model was simulated in one-dimensional lattices with
transition@@O — @@®. Notice that fork=1/2 (k=1) the ;o ranging fronk. =20 to L=10 000. At the beginning of
model reduces to the QERP) process. Now, using the gen- e simulations, all sites are occupied and a relaxation tjime
eralized counterpart of E@), the following equation for the - receding the stationary state is used. We estimated the order

stationary density of particles is obtained: of t, as 10Q and the data were collected in the stationary
-1 regime during an interval of length,=2t,. The averages
(2= 1)p2+2(1 - k) ps— - 0. (24)  were done oveN, independent trials, wittNg ranging from

~10P for the smaller systems td,~ 10° for the larger ones.
For any « value, the critical rate is.=1. However, for«  Botht, andt,, were estimated fox =~ \.. Since the only true

#1, stationary state of finite systems is the absorbing state, we
consider the quasistationary state approach, in which only
pe= for A=N—=A.~0. (25) surviving trials are taken into accouf#].
S 2|1-«| ¢ In Fig. 2, the quasistationary densjy as a function o

. is shown. This figure suggests a continuous transition from
Therefore, we Eave the_ usual mean field CP expogertt. an absorbing statép,=0) to an active one wheh — at
Moreover, forn=\; we find p~ 1/t for t— 0. Consequently, N=~20

To determine the critical rat&., two criteria were em-

TABLE Il. Summary of the critical parameters for CRP obtained ployed: the finite-size scaling behavior for the order param-

through cluster approximations and Monte Carlo simulations. Theeter? and the time-dependent behavior at the critical point
numbers in parentheses represent the uncertainties. [4,5] S

For a finite systemp, depends on system size and repli-

One site Two site Three site MC cation rate a$4]
Ne 1 4/3 1.5550 2.0263) Do~ LE (ALY, (26)
B 1/2 1 1 0.278%) .
" 1 1 1 1.717) where f(x) ~ x# for large positivex since ps~ A” for L> ¢,
S 1/2 1 1 0.1501) andé~|A|7"L is the correlation length. For large negative

f(x) ~x"1*# since p(A,L)~L™. For A>0, the density
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-0.2 . . . Nevertheless, intensive simulations at the critical point
] showed that the critical rate obtained from the last analysis is
] underestimated. So, the second criterium using the time-
0.4 dependent behavior became neces$alyNow, the simula-
tions start with a single particle at the center of the lattice and
- all trials (surviving or noj are taking into account. The
guantities of interest are the survival probabilRy(t), the
~ 08 o0s — mean number of cells
(=N
5 ] °7] n(H = <E o&t)>, (29
- -O.B—Eo.oo I r
gm N and the spreading of the population
Q
o] oo ] + A=2.026009) R2(t) = 1 S r20) (30)
i n(t\ 7
| o0s T T T T T T T 1 . .
20254 2.0256 20258 20260 2.0262 2.0264 at timet [5]. Here (- - -) represents the averages over all trials
12 : | o i | I andr the position of the site measured from the initial seed.
1 3 4 Moreover,o7=1 if the site is occupied ana-=0, otherwise.
log,,(L) At the critical point, it is expected tha,~t° n~t”, and

R?~t? while an upward(downward curvature is expected
FIG. 3. CRP guasistationary densities versus system sizk for for A>0(A <0). The zero-curvature analysis féx(t), n(t),

€[2.0255-2.026R(\ increases from bottom to tppPoints repre-  and RA(t) provides a critical rate\,=2.02634), which is
sent the simulational data and solid lines the quadratic fits. The insghgre precise than the previous estimate and, therefore, was
shows the mean curvature as well as the correspondent linear ﬁt-adopted as the correct value. Exponedts0.1591), 7

=0.3124), andz=1.264) were found. These exponents are
reaches a nonzero stationary value, but decreasks'der in good agreement with DP class, nameljsp=0.1595,
A<O0. Thus, in the vicinity of the critical point, the double- ..,=0.3137, andzcp=1.265[4].
logarithm plots ofps versusL exhibit upward curvatures for  Returning to the quasistationary analysis in the vicinity of
A>0 and downward curvatures far<0. In order to deter- )., we expect thatp~AP. A finite-size analysis forL
mine the mean curvature, the double-logarithm data are fitted [1000, 10 000 gives 8=0.2744). This B value is close to
by a quadratic polynomiaP, and the mean curvature is de- the exponenfB.p=0.2765 for the DP clasgl]. Other quan-

fined as tities of interest are the relaxation timg and the variance
1 log Ly X= L{({E@—@Z) of the quasistationary density. These
(k)= ————— f k(x)dx, (27) quantities are defined by
logL¢ - logL, log L; —y
7, ~ |A[™ (31

whereL;(L;) is the smalleglargen system size used anx) and
the local curvature defined by the usual formula
X~ |A[. (32

P"
K= Tz,“,z (28)  An evaluation ofy, using the definition31) is not precise
[1+(Py)"] due to difficulties in determining, for A # .. The exponent

We used the data fok =500 for the quadratic fits. It is °btained using this method wag=1.6(3). A more reliable
important to mention that the quadratic polynomials providedetermination of the, will be presented in the next discus-
an excellent fitting for all curves with the coefficient of cor- Sion. However, they exponent can be readily obtained. A
relationr2>0.9999. The double-logarithm plots pf versus ~ finite-size  analysis  for L €[1000,10000, gives y
L and the correspondent curvaturessey are shown in Fig. =0.5489), which agrees with the CP exponeptp=0.5439
3. In order to determine the point of zero curvature, the daté4]-
were extrapolated using a linear fit, and the critical rate ob- At the critical point one expects thd]
tained was\.=2.026@9). Here, and in the rest of the paper, —Lni
. . . T (33
the numbers in parentheses reflect the uncertainties. Notice P
that the critical rate of one-dimensional CRP is smaller tharand
the CP critical rate?\fpz3.297 8%2) [12]. Indeed, it is ex- Iy
CRP_.y CP o o X~ L7 (34)
pected that\;" <A;" since the replication rate for some
CRP configurations are higher than the replication rates foHere, 7, can be defined as the crossover time in the log
the same configurations in the Cg.g., the transition Xlog plot of p(t) versust (inset of Fig. 4. In Fig. 4, the
000 - @0® occurs at ratex in the CRP and\/2 in the  dependences o, 7,, and y with the system size at the
CP). critical point are shown. As expected, these quantities de-
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FIG. 5. Collapse of the data presented in Fig. 2.

FIG. 4. Mean value, variance, and relaxation time of the quasi- _
stationary density at the critical point as a function of the systemCRP exponents from Table Il and.=2.02634), an excel-

size. In the inset, examples of the determinationrpfor L=300  lent collapse was obtain&@ig. 5. The slope of the upper
andL=1000 are shown. straight line is 0.269, a value smaller but consistent with the

expected value of3. The slope of the lower straight line is

. —0.818, in excellent agreement with the expected value for
pend on the system size as power laws. The correspondegp -y +B=-0.8192.

exponents argg/v, =0.2518), y/»,=0.5031), and y /v, In order to complement the simulations, we studied the
=1.58%3) which agree with the valuegcp/v, ,=0.2521, interface scaling for the CRP at the critical point. This
Yepl v, ,=0.4958, andy /v, =1.5808 obtained for the method was introduced by Dickman and Mufioz for the
DP universality clas§4]. Using these exponents and the val- original CP[23]. The height of the interface at a siieis
ues of 8 and vy previously determined, we indirectly find a defined as the amount of time that the Siteas been occu-
value v, =1.0874). In turn, this value forv, leads toy, pied. A _unita_ry time step i_s defined as the implementation of
=1.720). Both v, and v, are consistent with the CP expo- N tentatives in the dynamics of CRP, whereés the number
nentsy, _=1.0968 andy_=1.7338[4]. of occupied sites just prior to the step. Thus, the height is

The critical exponents for CRP and CP as well as thelefined ash(t) =%, (§(t"). The widthW is defined asn?
perceptual differences among them are shown in Table 111=(h?—(h)2. For short timest< r,) we havew~ A and for
For all exponents, the differences between CRP and CP ateng times (t>7,)W reaches a saturation vali®g,~ L.
of the order of 1% or smaller. Moreover, rp~L4 where {=y,/v, [24]. The saturation oc-

In order to prove the scaling relatiq@6), we collapsed curs because all trials are used for sampling and the system
the data of Fig. 2 plotting. "+ p, versusL1|A|. Using the  certainly reaches an absorbing configuration at the critical

point. The last exponents obey the Family-Vicsek scaling

TABLE IlI. Critical exponents for CRIPA.=2.02634)] and cp  Telation a=pw({ [24]. Also, there is a connection between
[\.=3.297 8%2)], and the deviation between CRP and CP expo-interface and absorbing transition critical exponeffg=1
nents defined a&cp—ecrel/ecp Wheree represents the exponent. —d and a=(1-é6)yj/v, [23]. Using the CRP exponents we
All CP exponents were taken from Ré#] and references therein. obtainB,,=0.8409) anda=1.330). In Fig. 6, a scaling plot
of the width averaged over all trials, i.&\/L® versust/L¢,
Exponents CRP CcP Differeng@o) using the values=1.330 and;=1.5813 expected for the 1D
CRP is shown. A very good collapse is observed. The expo-

B 0.2744) 0.277 6484) 12 nent obtained from the linear region of the plot By
Y 0.54%9) 0.543 867) 0.4 =0.8395) and the analysis of the saturation widW,,
vy 1.0814) 1.096 8646) 0.8 ~L givesa=1.342), both in good agreement with the ex-
Y| 1.720) 1.733 833) 0.8 pected values.
5 0.1591) 0.159 473) 0.2 V. CONCLUSIONS

0.3134) 0.313 684) 0.4 '
7 1.264) 1.265 233) 01 In this paper the contact proce€SP) was modified in

order to model a monoclonal contact replication process
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(=]

Monte Carlo simulations provided a critical rate for the
absorbing transition.=2.02634) smaller than that for CP.
However, since all exponents are in good agreement with the
CP exponents with an error of the order of 1% or smaller, the
model is included in the DP class. Our results reinforce the
claim that small alterations in the CP rules can strongly af-
fect the critical point but not the critical exponen4,6].
Indeed, it is a necessary symmetry break, as for example the
inclusion of additional absorbing configuratiofis3], for the
occurrence of non-DP behavior. Also, the Williams and
Bjerknes(WB) model does not belong to the DP class be-
cause it has two absorbing configuratiqise vacuum and
full configurations. Indeed, at the critical pointy'®=1[19]
we have thaPg~ \t, R2~t, andn=const, but a single alter-
ation (death for any cellleads the model to the DP class. In
order to complement this work, the interface scaling proper-
ties of CRP were considered. The simulations corroborate the
Dickman and Mufioz[23] predictions. The growth and

1 roughness exponentg,,=0.8409) and «=1.330) are in
good agreement with the CP exponents.

Simulations in two- and three-dimensional lattices will be

FIG. 6. Collapsed curves for the mean width versus time forecessary in order to confirm if the DP class is preserved in
CRP withL=500, 1000, 2000, 5000. higher dimensions. This is not a trivial question because the
NNN dependence is more significant at higher dimensions.
(CRP). The model was analyzed via cluster approximationsAlso, simple generalizations such as the inclusion of diffu-
and Monte Carlo simulations. One-, two-, and three-site apsion and source of particles will be considered in the future.
proximations were used and the critical rate approaches the
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