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In this work, the contact process(CP) is modified in order to model a contact replication process(CRP) for
monoclonal reproduction. The occupation rates of an empty site depend on the nearest-neighbor and next-
nearest-neighbor sites. The CRP exhibits an absorbing state transition studied through cluster approximations
and Monte Carlo simulations. The critical rate obtained from simulations,lc=2.0263s4d, is smaller than that
for CP. However, the CRP critical exponents are in agreement with those for CP and, consequently, the model
belongs to the directed percolation universality class.
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I. INTRODUCTION

The simplest example of a nonequilibrium model with an
absorbing state transition is the contact process(CP), a
model initially proposed as an idealized epidemic[1]. In this
model, individuals lying on a lattice can die at rate 1 whereas
empty sites are occupied at ratekl /q. Here,k is its number
of occupied nearest-neighbor(NN) sites andq is the coordi-
nation number of the lattice. As the ratio of infection and
death increases, the system exhibits a critical phase transition
from an empty to an active state. It is a well-known fact that
the CP belongs to the directed percolation(DP) universality
class[2,3]. For a review about contact process and DP uni-
versality class see Refs.[4–6].

Due to its importance as a fundamental model, several CP
generalizations were proposed[7,8,10–14]. One of them is
the one-dimensionalu-contact process[7], in which the rate
for filling an empty site with two occupied NN sites isul
while the occupation rate of an empty site with one occupied
NN site is l /2 (CP is the particular caseu=1). Other ex-
amples are the diffusive CP[8], in which particles execute
NN hoppings at a rateD, the conservative CP, in which the
number of particles does not vary[9], and processes with
multiparticle creation[10] and annihilation[11]. All these
models preserve the DP universality class. Another group
whose static behavior falls in the DP class includes models
with an infinity number of absorbing configurations[12–14].
But for these models the time-dependent behavior, associated
with the spread of activity from a localized seed, varies con-
tinuously with the initial particle density[13,15,16].

A common feature for all mentioned models is that the
flow of the infection is equally divided among all the neigh-
bors of the contaminated individuals. This is a reasonable
hypothesis for a model of epidemics, but not adequate for a
model of monoclonal replication such as in tumor or bacte-
rial growth[17]. Actually, in these cases it is more realistic to
suppose a flow of the new cells divided just among the
empty neighbors[18]. The simplest model for monoclonal
replication is the Williams and Bjerknes(WB) model [19]
that considers death and reproduction only for cells with at

least one empty neighbor. The WB model does not belong to
the DP universality class. In the present work, we consider a
one-dimensional contact replication process(CRP), a mix of
the WB model and the contact process, in which only cells
with at least one empty neighbor replicate at ratel but any
one cell dies at rate 1. As discussed in the next section, this
CRP introduces a next-nearest-neighbor(NNN) dependence
for the occupation rate of an empty site.

This paper is organized as follows. In Sec. II the details of
the CRP model are presented. In Sec. III we discuss a mean
field analysis of CRP through cluster approximations. In Sec.
IV, Monte Carlo simulations are considered. Finally, some
conclusions are drawn in Sec. V.

II. MODEL

As in the original CP, the cells lie on a lattice with peri-
odic boundaries, in whichsi =P represents an occupied and
si =s an empty site. The dynamics of the CRP includes two
processes, namely, cell death and reproduction. A cell dies at
constant rate 1(the time is conveniently rescaled). In turn, if
a cell has at least one empty NN site, it replicates at ratel
and its daughter cell occupies one of its empty NN sites with
equal probabilities. Thus, only cells in “contact” with empty
sites can replicate. Notice the subtle but essential difference
between CRP and CP. In CP, an occupied site infects each
one of its empty NN sites at ratel /q independently of their
number. In contrast, in the CRP the occupation rates depend
on the number of empty NN sites. For example, the transi-
tion PPs→PPP has ratel /2 in CP and ratel in CRP.
All possible transitions and the respective rates for one-
dimensional CRP are shown in Table I. A central feature of
the CRP is the NNN dependence for the occupation rate of
an empty site, also present in the pair contact process(PCP)
[12,14]. However, differently from PCP, CRP has a unique
absorbing state. As expected for models with absorbing con-
figurations, if the reproduction rate is not sufficiently larger
than the death rate, the absorbing state always is reached and
the population vanishes. For the WB model, the critical rate
is lc

WB=1, and a valuelc
CP.3.297 85 was found for CP.

Thus, a critical ratelc
WB,lc,lc

CP defining the absorbing
frontier is expected for the present CRP.

The discrete-time formulation of the CRP used in the
simulations is the following. At each time step, one occupied*Electronic address: silviojr@ufv.br

PHYSICAL REVIEW E 70, 036119(2004)

1539-3755/2004/70(3)/036119(7)/$22.50 ©2004 The American Physical Society70 036119-1



site (a cell) is chosen at random. The chosen cell dies with
probability p=1/s1+ld. In turn, the cell replicates with
probability 1−p if at least one of their NN sites is empty. If
all the NN sites are occupied, the cell does not replicate. But,
if the replication occurs, one of their empty NN sites is oc-
cupied with equal probability. After each step, the time is
incremented byDt=1/n, wheren is the number of cells just
prior to the event. It is expected that discrete and continuous
dynamics differ somewhat at short times, but that both for-
mulations exhibit the same long-time dynamics[4].

III. CLUSTER APPROXIMATIONS

In this section we develop a mean field theory for the
CRP using cluster approximations introduced by ben-
Avraham and Köhler[20]. These approximations reproduce
qualitatively well the phase diagrams, but the critical expo-
nents for low-dimensional systemssdø3d are incorrect[4].
However, the critical rate for the absorbing state transition
approaches the correct value as higher order approximations
are considered. The cluster approximation consists of a set of
coupled differential equations for the probabilitiespnss̃d of a
clusters̃ with n sites. In general, the transitions of a cluster
with n sites depend on the sites outside the cluster. Conse-
quently, then-site probabilities are coupled with those form
site, wherem.n, generating an infinity hierarchy[14]. The
n-site approximation truncates this hierarchy by approximat-
ing m-site probabilities byn-site conditional probabilities.
For example, the four-site probability is approximated by

pssi,s j,sk,sld . pssius jdpss j,sk,sld

. pssius jdpss juskdpssk,sld s1d

in the two-site approximation, and

pssi,s j,sk,sld . pssius j,skdpss j,sk,sld, s2d

in the three-site approximation with the conditional prob-
abilities determined by theBayes’ rule[21].

A. One-site approximation

The probability rate for an occupied site is given by

d

dt
psP̂d = − psP̂d +

l

2
psŝPsd +

l

2
pssPŝd + lpsŝPPd

+ lpsPPŝd, s3d

where symbols with the hat designate the site, and symbols
without the hat represent its neighborhood. In Eq.(3), the
first term represents the particles sinking at rate 1, the second
and the third terms represent the occupation rates from the
neighbors with an empty neighborhood, and the fourth and
fifth terms the occupation from the neighbors with one occu-

pied NN site. By symmetry,psŝPsd=pssPŝd and

psŝPPd=psPPŝd. Thus, Eq.(3) becomes

d

dt
psPd = − psPd + lpssPsd + 2lpssPPd. s4d

Here, the hats were omitted for the sake of simplicity.
In the one-site approximation, the probability of a micro-

scopic configuration is factorized aspssi ,s j ,sk,sl , . . .d
.pssidpss jdpsskdpssld , . . ., i.e., a simple mean field approxi-
mation. UsingpsPd=r fpssd=1−rg, wherer is the mean
density of particles, and the one-site approximation in Eq.
(4), one finds

dr

dt
= sl − 1dr − lr3. s5d

The last equation has a non-null stationary solutionsdr /dt
=0d,

rs =Îl − 1

l
. s6d

Therefore, as in the original CP[4], the critical rate in this
approximation islc=1. In turn, the particle density near the
transition scales asr,uDu−b= ul−lcu−b, with b=1/2, avalue
different from that obtained for the original CP modelsb
=1d in the one-site approximation.

Concerning the dynamics of the CRP, the solution of Eq.
(5) with the initial conditionrs0d=1 is

rstd =Î l − 1

l − expf− 2sl − 1dtg
sl Þ lcd s7d

or

rstd =Î 1

1 + 2t
sl = lcd. s8d

Expanding Eq. (7) for long times, we have r−rs
, exps−2rs

2td for l.lc, leading to a relaxation time

t =
1

2rs
2 =

l

2sl − 1d
. s9d

Thus,t,uDu−ni, whereni=1, the same value of the original
CP. At the critical point, the particle density decays asymp-
totically as r,1/Ît. Therefore, remembering thatrsD

TABLE I. Transitions that contribute todpsPd /dt or
dpsPPd /dt.

Transition L DNP DNPP Np

sP̂s→sŝs 1 −1 0 1

PP̂s→Pŝs 1 −1 −1 2

PP̂P→PŝP 1 −1 −2 1

sPŝs→sPP̂s l /2 +1 +1 2

PPŝs→PPP̂s l +1 +1 2

sPŝPs→sPP̂Ps l +1 +2 1

PPŝPs→PPP̂Ps 3l /2 +1 +2 2

PPŝPP→PPP̂PP 2l +1 +2 1
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=0,td, t−d, the critical exponentd=1/2 is obtained. Notice
that the critical exponents in the one-site approximation obey
the scaling relationd=b /ni.

B. Two-site approximation

In the two-site approximation the probability of a micro-
scopic configuration is factorized as

pssi,s j,sk,sl, . . . d .
pssi,s jdpss j,skdpssk,sld¯

pss jdpsskd¯
.

s10d

The following pair probabilitiesf=psPPd (both sites are
occupied), v=psssd (both sites are empty), m=pssPd
=psPsd (one site is occupied and the other empty) are de-
fined. Moreover, the normalization conditionf+v+2m=1
and the relationr=f+m reduce the number of independent
variables to 2.

Table I contains all processes for whichr or f change,
the correspondent ratessLd, the variations in the number of
particlessDNPd and pairssDNPPd, and the number of states
with the same probabilitysNpd.

Each transition s̃→ s̃8 in Table I contributes to
dpsPPd /dt with pss̃dLNpDNPP. Using the relation

pssi,s j,sk, . . . d + pssi8,s j,sk, . . . d = pss j,sk, . . . d s11d

and the symmetry conditions, the following exact equation is
obtained:

d

dt
psPPd = − 2psPPd + lfpsPsd + psPsPd + psPPsd

+ psPPsPdg. s12d

An analogous procedure fordpsPd /dt leads to Eq.(4).
Using Eq.(10) in Eqs.(4) and (12), we obtain

dr

dt
= − r + l

r2 − f2

r
s13d

and

df

dt
= − 2f + l

sr2 − f2ds1 − fd
rs1 − rd

. s14d

The stationary solutions of Eqs.(13) and (14) are

rs = 2 −Î l

l − 1
andfs =Îl − 1

l
rs, s15d

respectively. Takingrs=0 in Eq. (15), the critical ratelc
=4/3 is found. Expanding Eq.(15) aroundlc, one finds that
rs,sl−lcd and, consequently,b=1, which differs from the
value found in the one-site approximation. A numerical inte-
gration of Eqs.(13) and (14) gives rsD=0,td, t−1 and t
,uDu−1 in the asymptotic limitst→`d. Thus, d=1 and ni

=1 in agreement with the scaling relationd=b /ni. Notice
that the usual mean field exponents for the CP were obtained
[4].

C. Three-site approximation

The three-site probabilities are defined aspsPPPd=a,
pssPPd=psPPsd=b, psPsPd=c, pssPsd=d,
psPssd=psssPd=e, andpssssd= f. Now, we have 10
unknown variables(including r, m, v, andf), but the num-
ber of independent variables is reduced to four through the
following relations:

r = f + m, f + 2m + v = 1, a + b = f, s16d

b + d = m, c + e= m, e+ f = v.

Using Eqs.(4) and(12) with the correspondent equations for
dpsPPPd /dt and dpssssd /dt, the stationary density can
be evaluated. Thus, from the tables containing all transitions
that contribute toda/dt or df /dt the following equations are
obtained:

dpsPPPd
dt

= − 3psPPPd + 2lpssPPd + 4lpsPsPPd

+ lpssPsPsd s17d

and

dpssssd
dt

= pssPsd + 2psPssd − lfpsPsssd

+ psPPsssdg. s18d

Substituting the three-site approximation,

pssi,s j,sk,sl,sm . . . d

.
pssi,s j,skdpss j,sk,sldpssk,sl,smd¯

pss j,skdpssk,sld¯
, s19d

in Eqs.(4), (12), (17), and(18) we find

d

dt
r = − r + ld + 2lb, s20d

d

dt
f = − 2f + lsm + b + cd + l

bc

m
, s21d

da

dt
= − 3a + 2lb + 4l

bc

m
+ l

cd2

m2 , s22d

and

df

dt
= d + 2e− l

ef

v
− l

bef

mv
. s23d

The coupled equations were numerically solved providing
the critical ratelc=1.5550 and the usual mean field expo-
nents for the CPb=d=ni=1.

The stationary densitiesrs determined through cluster ap-
proximations and Monte Carlo simulations are compared in
Fig. 1. The critical rate obtained from Monte Carlo simula-
tions waslc<2.026, as described in the next section. So, the
critical rate in then-site approximation approaches the simu-
lated value as larger clusters are considered.
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All results for the cluster approximations are summarized
in Table II and compared with MC simulations discussed in
the next section.

In general, the critical exponents obtained for any mean
field approximation have the same values. However, the dis-
tinct b andd values found for the one-site approximation are
a peculiarity of the present model. In order to confirm this
hypothesis, we generalized the model using a ratekl for the
transitionPPs→PPP. Notice that fork=1/2 sk=1d the
model reduces to the CP(CRP) process. Now, using the gen-
eralized counterpart of Eq.(4), the following equation for the
stationary density of particles is obtained:

s2k − 1drs
2 + 2s1 − kdrs −

l − 1

l
= 0. s24d

For any k value, the critical rate islc=1. However, fork
Þ1,

rs =
D

2u1 − ku
for D = l − lc < 0. s25d

Therefore, we have the usual mean field CP exponentb=1.
Moreover, forl=lc we findr,1/t for t→`. Consequently,

d=1. The parameterk plays a role similar to that of the
diffusion rateD in the pair contact process with diffusion
(PCPD) [22]. Indeed, PCPD seems to exhibit two distinct
universality classes depending on theD value in the two-site
approximation.

IV. MONTE CARLO SIMULATIONS

The model was simulated in one-dimensional lattices with
sizes ranging fromL=20 to L=10 000. At the beginning of
the simulations, all sites are occupied and a relaxation timetr
preceding the stationary state is used. We estimated the order
of tr as 100L and the data were collected in the stationary
regime during an interval of lengthtm=2tr. The averages
were done overNs independent trials, withNs ranging from
,106 for the smaller systems toNs,103 for the larger ones.
Both tr andtm were estimated forl<lc. Since the only true
stationary state of finite systems is the absorbing state, we
consider the quasistationary state approach, in which only
surviving trials are taken into account[4].

In Fig. 2, the quasistationary densityr̄s as a function ofl
is shown. This figure suggests a continuous transition from
an absorbing statesr̄s=0d to an active one whenL→` at
l<2.0.

To determine the critical ratelc, two criteria were em-
ployed: the finite-size scaling behavior for the order param-
eter r̄s and the time-dependent behavior at the critical point
[4,5].

For a finite system,r̄s depends on system size and repli-
cation rate as[4]

r̄s , L−b/n'fsDL1/n'd, s26d

where fsxd,xb for large positivex since r̄s,Db for L@j,
andj,uDu−n' is the correlation length. For large negativex,
fsxd,x−n'+b since rsD ,Ld,L−1. For D.0, the density

FIG. 1. Stationary densities for cluster approximations and
Monte Carlo simulations.

TABLE II. Summary of the critical parameters for CRP obtained
through cluster approximations and Monte Carlo simulations. The
numbers in parentheses represent the uncertainties.

One site Two site Three site MC

lc 1 4/3 1.5550 2.0263(4)

b 1/2 1 1 0.273(4)

ni 1 1 1 1.71(7)

d 1/2 1 1 0.159(1)

FIG. 2. CRP quasistationary densities versus the replication rate
l. Systems with sizesL=20–2000 are shown.
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reaches a nonzero stationary value, but decreases asL−1 for
D,0. Thus, in the vicinity of the critical point, the double-
logarithm plots ofr̄s versusL exhibit upward curvatures for
D.0 and downward curvatures forD,0. In order to deter-
mine the mean curvature, the double-logarithm data are fitted
by a quadratic polynomialP2 and the mean curvature is de-
fined as

kkl =
1

log Lf − log Li
E

log Li

log Lf

ksxddx, s27d

whereLisLfd is the smaller(larger) system size used andksxd
the local curvature defined by the usual formula

k =
P29

f1 + sP28d
2g3/2. s28d

We used the data forLù500 for the quadratic fits. It is
important to mention that the quadratic polynomials provide
an excellent fitting for all curves with the coefficient of cor-
relationr2.0.9999. The double-logarithm plots ofr̄s versus
L and the correspondent curvatures(inset) are shown in Fig.
3. In order to determine the point of zero curvature, the data
were extrapolated using a linear fit, and the critical rate ob-
tained waslc=2.0260s9d. Here, and in the rest of the paper,
the numbers in parentheses reflect the uncertainties. Notice
that the critical rate of one-dimensional CRP is smaller than
the CP critical ratelc

CP=3.297 85s2d [12]. Indeed, it is ex-
pected thatlc

CRP,lc
CP since the replication rate for some

CRP configurations are higher than the replication rates for
the same configurations in the CP(e.g., the transition
PPs→PPP occurs at ratel in the CRP andl /2 in the
CP).

Nevertheless, intensive simulations at the critical point
showed that the critical rate obtained from the last analysis is
underestimated. So, the second criterium using the time-
dependent behavior became necessary[5]. Now, the simula-
tions start with a single particle at the center of the lattice and
all trials (surviving or not) are taking into account. The
quantities of interest are the survival probabilityPsstd, the
mean number of cells

nstd = Ko
rW

srWstdL , s29d

and the spreading of the population

R2std =
1

nstdKo
rW

r2srWstdL s30d

at timet [5]. Here,k¯l represents the averages over all trials
andrW the position of the site measured from the initial seed.
Moreover,srW=1 if the site is occupied andsrW=0, otherwise.
At the critical point, it is expected thatPs, td, n, th, and
R2, tz while an upward(downward) curvature is expected
for D.0sD,0d. The zero-curvature analysis forPsstd, nstd,
and R2std provides a critical ratelc=2.0263s4d, which is
more precise than the previous estimate and, therefore, was
adopted as the correct value. Exponentsd=0.159s1d, h
=0.312s4d, andz=1.26s4d were found. These exponents are
in good agreement with DP class, namely,dCP=0.1595,
hCP=0.3137, andzCP=1.265[4].

Returning to the quasistationary analysis in the vicinity of
lc, we expect thatr,Db. A finite-size analysis forL
P f1000,10 000g givesb=0.274s4d. This b value is close to
the exponentbCP=0.2765 for the DP class[4]. Other quan-
tities of interest are the relaxation timetr and the variance
x;Ldskr̄s

2l−kr̄sl2d of the quasistationary density. These
quantities are defined by

tr , uDu−ni s31d

and

x , uDu−g. s32d

An evaluation ofni using the definition(31) is not precise
due to difficulties in determiningtr for lÞlc. The exponent
obtained using this method wasni=1.6s3d. A more reliable
determination of theni will be presented in the next discus-
sion. However, theg exponent can be readily obtained. A
finite-size analysis for LP f1000,10 000g, gives g
=0.545s9d, which agrees with the CP exponentgCP=0.5439
[4].

At the critical point one expects that[4]

tr , Lni/n' s33d

and

x , Lg/n'. s34d

Here, tr can be defined as the crossover time in the log
3 log plot of rstd versust (inset of Fig. 4). In Fig. 4, the
dependences ofr̄s, tr, and x with the system size at the
critical point are shown. As expected, these quantities de-

FIG. 3. CRP quasistationary densities versus system size forl
P f2.0255−2.0262g (l increases from bottom to top). Points repre-
sent the simulational data and solid lines the quadratic fits. The inset
shows the mean curvature as well as the correspondent linear fit.
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pend on the system size as power laws. The correspondent
exponents areb /n'=0.251s8d, g /n'=0.503s1d, and ni /n'

=1.581s3d which agree with the valuesbCP/n'CP
=0.2521,

gCP/n'CP
=0.4958, andniCP

/n'CP
=1.5808 obtained for the

DP universality class[4]. Using these exponents and the val-
ues ofb and g previously determined, we indirectly find a
value n'=1.087s4d. In turn, this value forn' leads toni

=1.72s0d. Both n' and ni are consistent with the CP expo-
nentsn'CP

=1.0968 andniCP
=1.7338[4].

The critical exponents for CRP and CP as well as the
perceptual differences among them are shown in Table III.
For all exponents, the differences between CRP and CP are
of the order of 1% or smaller.

In order to prove the scaling relation(26), we collapsed
the data of Fig. 2 plottingLb/n'r̄s versusL1/n'uDu. Using the

CRP exponents from Table III andlc=2.0263s4d, an excel-
lent collapse was obtained(Fig. 5). The slope of the upper
straight line is 0.269, a value smaller but consistent with the
expected value ofb. The slope of the lower straight line is
−0.818, in excellent agreement with the expected value for
DP −n'+b.−0.8192.

In order to complement the simulations, we studied the
interface scaling for the CRP at the critical point. This
method was introduced by Dickman and Muñoz for the
original CP [23]. The height of the interface at a sitei is
defined as the amount of time that the sitei has been occu-
pied. A unitary time step is defined as the implementation of
n tentatives in the dynamics of CRP, wheren is the number
of occupied sites just prior to the step. Thus, the height is
defined ashistd=St8=0

t sist8d. The width W is defined asW2

=kh2l−khl2. For short timesst!trd we haveW, tbW and for
long times st@trdW reaches a saturation valueWsat,La.
Moreover,tr,Lz where z=ni /n' [24]. The saturation oc-
curs because all trials are used for sampling and the system
certainly reaches an absorbing configuration at the critical
point. The last exponents obey the Family-Vicsek scaling
relation a=bWz [24]. Also, there is a connection between
interface and absorbing transition critical exponentsbW=1
−d and a=s1−ddni /n' [23]. Using the CRP exponents we
obtainbW=0.840s9d anda=1.33s0d. In Fig. 6, a scaling plot
of the width averaged over all trials, i.e.,W/La versust /Lz,
using the valuesa=1.330 andz=1.5813 expected for the 1D
CRP is shown. A very good collapse is observed. The expo-
nent obtained from the linear region of the plot isbW
=0.838s5d and the analysis of the saturation widthWsat

,La givesa=1.34s2d, both in good agreement with the ex-
pected values.

V. CONCLUSIONS

In this paper the contact process(CP) was modified in
order to model a monoclonal contact replication process

FIG. 4. Mean value, variance, and relaxation time of the quasi-
stationary density at the critical point as a function of the system
size. In the inset, examples of the determination oftr for L=300
andL=1000 are shown.

TABLE III. Critical exponents for CRPflc=2.0263s4dg and CP
flc=3.297 85s2dg, and the deviation between CRP and CP expo-
nents defined asu«CP−«CRPu /«CP, where« represents the exponent.
All CP exponents were taken from Ref.[4] and references therein.

Exponents CRP CP Difference(%)

b 0.274(4) 0.277 649(4) 1.2

g 0.545(9) 0.543 86(7) 0.4

n' 1.087(4) 1.096 864(6) 0.8

ni 1.72(0) 1.733 83(3) 0.8

d 0.159(1) 0.159 47(3) 0.2

h 0.312(4) 0.313 68(4) 0.4

z 1.26(4) 1.265 23(3) 0.1

FIG. 5. Collapse of the data presented in Fig. 2.
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(CRP). The model was analyzed via cluster approximations
and Monte Carlo simulations. One-, two-, and three-site ap-
proximations were used and the critical rate approaches the
simulated value as larger clusters are considered. The critical
exponents in the one-site approximation areb=1/2, d=1/2,
andni=1, whereas the usual mean-field CP exponentsb=d
=ni=1 were found for higher cluster approximations.

Monte Carlo simulations provided a critical rate for the
absorbing transitionlc=2.0263s4d smaller than that for CP.
However, since all exponents are in good agreement with the
CP exponents with an error of the order of 1% or smaller, the
model is included in the DP class. Our results reinforce the
claim that small alterations in the CP rules can strongly af-
fect the critical point but not the critical exponents[4,6].
Indeed, it is a necessary symmetry break, as for example the
inclusion of additional absorbing configurations[13], for the
occurrence of non-DP behavior. Also, the Williams and
Bjerknes(WB) model does not belong to the DP class be-
cause it has two absorbing configurations(the vacuum and
full configurations). Indeed, at the critical pointlc

WB=1 [19]
we have thatPs,Ît, R2, t, andn=const, but a single alter-
ation (death for any cell) leads the model to the DP class. In
order to complement this work, the interface scaling proper-
ties of CRP were considered. The simulations corroborate the
Dickman and Muñoz[23] predictions. The growth and
roughness exponentsbW=0.840s9d and a=1.33s0d are in
good agreement with the CP exponents.

Simulations in two- and three-dimensional lattices will be
necessary in order to confirm if the DP class is preserved in
higher dimensions. This is not a trivial question because the
NNN dependence is more significant at higher dimensions.
Also, simple generalizations such as the inclusion of diffu-
sion and source of particles will be considered in the future.
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